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CHAPTER 1: GENERAL INTRODUCTION

Introduction

Suboptimal vitamin D status has been linked to poor outcomes in camitras
disease and cancer, complications that occur frequently in indigiduidh noninsulin-
dependent diabetes mellitus (NIDDM). Simultaneously, the North Amenpopulation has
seen increasing incidence of NIDDM, and a growing awareokegsdespread vitamin D
insufficiency.  Therefore, understanding vitamin D metabolism IDDW becomes
important in seeking to improve outcomes of this disease asdimss more prevalent.
Poorly controlled NIDDM can lead to impaired renal function, anDDM cases account
for a large portion of advanced kidney disease in this country. Addlyipepidemiological
studies have linked NIDDM and chronic kidney disease with low or quate vitamin D
status, although a concrete explanation for this association reehasng. In this thesis, we
use a rat model of NIDDM to test the hypothesis that impaiesdlrreabsorption of

circulating vitamin D contributes to the disruption of vitamin D homeostasis iiDNID

Thesis Organization

This thesis will examine recent literature pertainingvitamin D metabolism, its
mechanism of action, classical and non-classical roles of #uaivit and diseases associated
with poor vitamin D status, particularly cancer and cardiovascuiaadge. The review will
also discuss the NIDDM disease model used in our study, outlifiagassociated

pathologies, the likely etiology, and the specific rodent model used istady. Secondly,
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the thesis will contain the author's published article (10) repotieg results of work
undertaken to test our hypothesis that vitamin D metabolism iproonised in NIDDM.
The article will contain an abstract, an introduction to the prolakng with the hypothesis
to be tested, the experimental materials and methods used, the osésulr experiments, and
a general discussion of these results. Thirdly, the thesisuntifier discuss the ramifications
of our findings in a general discussion section, and indicate aoeasirther research.
References will be cited at the end of each chapter. Fitlalyauthor’'s acknowledgements

will end the thesis.

Literature Review

Introduction to Vitamin D Metabolism

Vitamin D is unique among the vitamins in that it can be produced photochemically
in the skin from 7-dehydrocholesterol. Energy from ultraviolet radiation is usedatio the
B ring of 7-dehydrocholesterol and produce pre-D3. Pre-D3 then spontaneouslyasemeri
to cholecalciferol (vitamin D3) at a temperature-dependent rate (18, 73, 74 nafitely,
vitamin D can be obtained in the diet, either as vitamin D3 or ergocalciferoh{nid2), a
plant- or fungal-derived form. Both of these vitamin D forms are metabolized sathe
way and have equal physiological activity (75, 187), although vitamin D2 appears to be
cleared from circulation more quickly than vitamin D3 (11). Since skin production of
vitamin D3 is the primary source for most human populations (76) vitamin D3 becomes the
most important form in determining vitamin D status in normal human conditions and will
therefore be the focus of the following discussion. From the skin, vitamin D3 is tr@aspor

to the liver in the blood bound to vitamin D binding protein (DBP) where it undergoes
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hydroxylation by one of the many enzymes in the cytochrome p450 superfamily to produce
25-hydroxyvitamin D (25D3), the most stable metabolite of vitamin D and the major for
circulating in the body. Both CYP27A1, a mitochondrial p450, and CYP2R1, a microsomal
p450, have been identified as capable of this conversion in humans. However, the substrate
affinity and distribution pattern of CYP2R1 seem to suggest that this enzyme slso ha
primary 25-hydroxylase activity (40, 160, 181, 202), but this has not been definitively
demonstrated (160, 181). Once produced, 25D3, again bound to DBP, is transported in the
serum to the proximal tubule cells of the kidney where it is hydroxylatecbadéme by
another p450-related enzyme, CYP27BIifhydroxylase), to produce the active hormone
form, 1,25-dihydroxyvitamin D (1,25D3). This active form 1,25D3 is responsible for the
classical actions associated with the vitamin, namely the maintenanceioifrcahd
phosphate homeostasis. When present in excess, both 25D3 and 1,25D3 can be inactivated by
subsequent 24-hydroxylation. This inactivation is carried out by renal or heai2z4A1
(24-hydroxylase), another mitochondrial cytochrome p450. The 24-hydroxylated rniegabol
are then catabolized further into water-soluble calcitroic acid and eddrethe urine.
Mechanism of Action

Once the active hormone 1,25D3 is released into circulation, isaciigrly to other
steroid hormones by binding a nuclear receptor, the vitamin D nueeeptor (VDR), to
induce and regulate the expression of proteins involved in calciumpéibsorreabsorption,
and resorption in the intestine, kidney, and bone, respectively. Thenpeesé 1,25D3
activates VDR, initiating recruitment of retinoid X receptor anuling to genomic DNA at
the vitamin D response element (VDRE). Along with additional co-regulatotgips, these

complexes can act as activators or repressors of transcription.
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Classical Roles for Vitamin D

The effects of vitamin D, in conjunction with parathyroid hormone (P&Hd
fibroblast growth factor 23 (FGF23), on calcium homeostasis and batih lave been
widely documented, and its mechanism of action in this endocripecity is fairly well
described (27, 161, 174). In this function, 1,25D3 directly increases calciworpts in
intestinal epithelial cells by inducing the expression of thkeiem channel transporters
TRPV5 and TRPV6 on the apical membrane of the enterocyte vimildtaneously inducing
transcription calcium binding protein calbindin-D9k and basolateral membCa pump
PMCA1b (42, 101), which are required for transcellular transport ofucal¢100). Under
conditions of low calcium intake, transcellular transport of calcsurpasses the passive
paracellular transport as the primary mechanism for calciuorg@tisn, therefore increasing
the importance of vitamin D in calcium transport in these conditi@8s 98). Under
conditions of adequate or abundant calcium availability paracelrdasport appears to
dominate and the regulation of absorption becomes less dependent medéece of the
vitamin, and more dependent of the levels of calcium itself (176). hypocalcemic
conditions, the calcium sensing receptor of the parathyroid glancksigte lack of calcium
and induces PTH secretion. PTH in turn, induces renal CYP27B1 expressl production
of 1,25D3, increasing intestinal absorption and renal reabsorption of calaion
phosphorus.  Additionally PTH, possibly in conjunction with 1,25D3, acti\ag&soclasts
and osteoclastogenesis in bone to increase bone resorption and release calciunphatephos
and restore blood calcium homeostasis. In response to 1,25D3 and restaregphosphate
levels, osteocytes secrete FGF23, which then suppresses renal BIYEZ3ression and

renal phosphate reabsorption (171). In a negative feedback loop, 1,25D3 ssgppiddse
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secretion via VDR binding to a repressor VDRE upstream of th¢ g€he sequence (174).
Additionally, 1,250H2D negatively regulates its own production by direttpypressing the
renal expression of CYP27B1 and inducing its degradation by inegeaSYP24A1
expression, and by increasing the production of FGF23 by osteollasts161). These
factors work together to regulate renal production and systesiease of 1,25D3, and
maintain proper blood calcium and phosphorus in normal conditions.

Through its powerful regulatory effects on calcium and phosphorus homsispsta
vitamin D necessarily impacts the growth and development of barewste (151, 152, 178).
Indeed, the low concentrations of vitamin D result in severe bai®mmations known as
Ricketts and osteomalacia. Less well understood, however, is éhefreitamin D in the
development of osteoporosis. The numerous endocrine factors influencaegseli
development and progression are still being uncovered and characterizegtighashinical
studies indicate that vitamin D supplementation is a criticafeplan the treatment and
prevention of the disease through its regulation of PTH release (165). Fqlexana large
double-blind placebo controlled study, supplementation with vitamin D andumal
increased lumbar spine bone mineral density (BMD), decreaseckldtere risk of hip
fractures, and reversed secondary hyperparathyroidism inyeldamen (38). Additionally,
vitamin D analogues were found to prevent bone mineral loss and spictards in patients
with primary osteoporosis or with glucocorticoid-induced osteopord$82), while
supplementation with vitamin D itself plus calcium appears to dedhe in patients treated
with low-dose glucocorticoids (29, 162), although perhaps with slightyydégcacy. The
primary mechanism appears to be the suppression of PTH erpremsi reversal of

hyperparathyroidism (38), a condition that causes increased bone tuanoMess of BMD.
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However, vitamin D may also decrease the risk of fractyrstiengthening muscle tone and
responsiveness, leading to reduced risk of falls in elderly populations (20).

Additionally, there is also evidence that 1,25D3 may act more Wjirectbone
formation by influencing osteoblast and chondrocyte differentiation and function (&@8).
cell types express VDR and show responsiveness to 1,25D3 treatdmmever, the actions
of 1,25D3 appear to be sensitive to stage of cellular growth. In, @aeyosteoblastic cell
cultures, 1,25D3 treatment suppressed expression of type | collagatkalme phosphatase
MRNA, markers of bone mineralization activity, while treatmeniatédr stage cultures had
the opposite effect (149). The effect of timing on the differendisponse to 1,25D3 could
explain contrasting results of in vivo animal studies. Both osteedpasific VDR null mice
and mature VDR over-expressing transgenic mice showed increas&d ddmpared to
controls (61, 184). Together, these studies indicate that the pleiodftgmts of vitamin D
on bone formation and maintenance extend beyond systemic mineral tesise@nd
depend on the developmental stage of the cells involved.

Non-classical Roles for Vitamin D

A more widespread role for vitamin D in many non-classicadugs has been
postulated based on the observation of VDR and CYP27B1 expression yrerteaxrenal
tissues (1, 17, 19, 58, 188). Thus, it is now widely acknowledged that 1,28®3as
significant paracrine or autocrine activity mediated by theall or intracellular activity of
CYP27B1 in cells of the immune system (1), epithelium (17, 96), and thesked with
insulin signaling, such as the cells of the pancreas (22). The regulation of these non-
classical functions of the vitamin appear to depend primarithermvailability of circulating

25D3, and require delivery of the DBP-25D3 complex to the target cells (96).
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Vitamin D and Immune function

Since the first evidence of VDR in peripheral mononuclear leukotytsyht about
the speculation of vitamin D activity in immune function, many tgles of both the innate
and adaptive arms of the immune system have shown responsiveness to a2&@B,as
VDR and CYP27B1 expression (18, 39, 173).

As part of the non-specific and non-memory-conferring celluksponses to
pathogens, referred to as the innate immune response, 1,25D3 directBsititRiexpression
and production of cathelicidin antimicrobial peptide (CAMP) in isaatBuman
keratinocytes, monocytes and neutrophils and myeloid cells (63). CABHife&t activity
in the destruction of pathogenic bacteria, suggesting the importancéivef atamin D in
the first-line protection of epithelial cell surfaces from siea and infection. CAMP levels,
along with 1,25D3 levels are often reduced in patients with cfystigsis (207), indicating
vitamin D may also mediate healthy lung epithelial function.MPAproduction also appears
to be induced through activation of the toll like receptors (TLRS) upon recognitionatficspe
microbial components. Moreover, TLR activation by microbial peptiniésced VDR and
CYP27B1 expression in human macrophages, and required the presenc® af #sera
to induce CAMP mRNA production. However, low serum 25D3 levels or spadiibition
of CYP27B1 attenuates CAMP production, suggesting that local autgmraaiction of
1,25D3 is crucial to the innate TLR-mediated CAMP response andpendent on the
adequate amounts of 25D3 substrate (117).

Additionally, vitamin D appears to modulate the adaptive immune respbas is
responsible for the long-term protection mediated in part by tbduption of antigen-

specific immunoglobulins. In this role, 1,25D3 directly inhibits the dfféation,
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proliferation, activation and survival of human dendritic cells. This itibibilimits the
maturation of cells involved in antigen-recognition to only highlyvattd cells, possibly
attenuating the first response to pathogenic recognition and prevestingtion of
autoreactive cells (157). Furthermore, treatment with 1,25D3 ieHilpiroliferation of
activated B cells and inhibited their differentiation into immunoglaobsécreting plasma
cells. These cells also expressed CYP27B1, and the treatnfiecis efeen with 1,25D3
administration were repeated with the administration of 25D3 atfal@$igher dose (39),
suggesting intracellular 1,25D3 production could also be important in fiimstion.
Additionally, 1,25D3 regulates T cell development by inhibiting the fen@ltion of activated
T cells (163). This regulation is accomplished in part by inhipithe antigen presenting
capability of dendritic cells, as mentioned previously (157), thdaaiag recognition and
subsequent T cell activation, and also by influencing the developmantraiture T helper
(Th) cells. 1,25D3 treatment directs immature Th cell diffeséoh toward Th2
development by increasing the release of cytokines IL-4, IL-5, afid I(26), and inhibits
the development of Thl/Th1l7 cells, thus limiting their ability to attivaacrophages and
produce proliferative (IL-2) and pro-inflammatory (IFM\N- cytokines (50, 109).
Collectively, these actions effectively modulate the inflamnyatesponse of the adaptive
immune system, a response that is overactive in autoimmune disediserefore it is not
surprising that 1,25D3 administration has been shown to reverse dahénaitogression of
multiple animal models of autoimmune disease (35, 36, 64, 154). The fact that mang of thes
immunomodulatory effects can be mediated via autocrine 1,25D3 productbomsstent

with the observed correlation between low serum levels of 25D3 andhsecraisk of
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development of autoimmune diseases such as multiple sclerosis/1 tyji@betes, and
systemic lupus erythematosus in humans (15, 92, 133).
Vitamin D and cancer

There is well-documented evidence that vitamin D has profound actwitgell
development and cell cycle, specifically in regulating the pralifen, differentiation, and
apoptotic signals in cell culture systems. This fact maya@xpghe observed link between
low serum 25D3 and increased risk of cancer mortality, espeeaiaong those involving
growth-sensitive epithelial tissues such as the breast, coloprestdte. Detection of VDR
expression in these tissues further supports this idea (91, 96, 139, 155hish@wnn of
1,25D3 or its precursor 25D3 has been demonstrated to inhibit prolifedtionltured
multipotent mesenchymal cells (12), colonic epithelial cél%),( prostate adenoma cells
(155), and multiple breast cancer cell lines (43). It is thougmeiiate this antiproliferative
action by arresting cell cycle in the gap 0 or gap 1 phase, prey&iA synthesis and cell
division via increasing expression of cell cycle inhibitors p21 and @27 139). In
hyperplasic prostate cells, this arrest was permanent giaceells did not resume growth
after the 1,25D3 was removed (155). These growth inhibitory etipgtsar to be dependent
on VDR expression. In fact, Hedlund et al. (71) was able to resterantiproliferative
effects of 1,25D3 in JCA-1 prostatic carcinoma cells, which do noteegpVDR are not
normally responsive to 1,25D3 treatment, by reestablishing VDR elqnesig stable
transfection.

Additionally, 1,25D3 actively promotes cell differentiation, a procéisat is
commonly disrupted in malignant tumors. In vitro, Palmer et al. (15®pdstrated that

1,25D3 induced the expression of cell-adhesion protein E-cadherin inaadnoma cells.
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Loss of E-cadherin, a tumor suppressor gene, is predictive of dgitramé normal epithelial
cell phenotype to an invasive carcinoma (66, 150). Normal hematopabsiaiferentiate
to active macrophages after exposure to 1,25D3, but cells derived fétrkNockout mice
did not (145), indicating the necessity of genomic actions of vitamim Ehis process.
Furthermore, a CYP27B1 null mouse model developed poorly differentipiger@mal cells
compared to controls, indicating that local 1,25D3 production may also beortant
factor in regulating cell differentiation (84).

Finally, 1,25D3 influences apoptosis signaling in cancer celletsodFor example,
MCF-7 breast cancer cells showed increased apoptotic signaltiomuafter 1,25D3
treatment (175), but multipotent mesenchymal cells decrease fihetees after 1,25D3
treatment (12). The difference may be related to the degrééferentiation in these cells
and could be mediated in part by steroid hormones, with cells resptmsiteroid signaling
becoming more susceptible to apoptosis in the presence of 1,25D3 (16, 13¥st&ure,
prostate cancer cells showed reduced responsiveness to 1,25D3-medathdirgribition
when androgen receptors are down regulated (213). However, breast cealis lacking
estrogen receptors do not show this same effect (56), and thetefameethanism may be
very specific to cancer cell type.

Vitamin D and Cardiovascular Disease

Vitamin D is also recognized as a factor influencing cardiovasaisease (CVD),
with serum 25D3 levels being inversely and independently associatiedeported CVD
cases, hypertension and incidence of myocardial infarction (23, 97188)/, The role of
vitamin D in the development of the disease appears to be twodralst, 1,25D3 plays a

role in the prevention of hypertension by actively regulatingrémen-angiotensin system
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(RAS) (114). Secondly, it appears to protect the integrity of vasa&rdothelial cells by
reducing the inflammatory signals and macrophage recruitmentmagdalso reduce the
thrombocytic response. Evidence shows that cultured human coronary eartitpelial
cells express VDR and respond to treatment with 1,25D3 by dawedhe release of tumor
necrosis factoro. (TNF-[], a pro-inflammatory cytokine linked to the development of
vasculitis and coronary artery lesions (182). In vivo, VDR knockout mmése decreased
gene expression of antithrombin and thrombomodulin, proteins with anti-cbagudativity
(6). Additionally, platelet aggregation was significantly incesh$n these animals under
normal calcium conditions. Animal models also demonstrate the @iffect of 1,25D3 on
blood pressure regulation, and this effect appears to be independsrgrafatrine effect on
calcium status. For example, VDR knockout mice had higher circulaigmgn and
angiotensin Il levels than controls, and developed hypertension priwe tetection of overt
hypocalcemia (113). In addition, in a renal-targeted CYP27B1 knockousenmodel,
1,25D3 treatment normalized elevated circulating renin levels and lpossbsure, but
treatment with a calcium rescue diet restoring normocakéaied to show the same impact
blood pressure or renin production (214). The direct inhibition of VDR-nmestiatnin
production is further illustrated by the fact that anti-hypesitee agents, such as angiotensin
converting enzyme inhibitors and angiotensin Il receptor antagoalsts normalize blood
pressure in VDR null mice. However, their administration resualts additional increase
in circulating renin levels due to the loss of feedback inhibitioarmiotensin Il, indicating

that the effects of vitamin D are not mediated via angiotensin Il sign@dog).
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Vitamin D and NIDDM

Epidemiological evidence appears to implicate vitamin D in developmienon-
insulin dependent diabetes mellitus (NIDDM), with numerous langgiest inversely linking
low serum 25D3 with many indicators of metabolic syndrome, sugisakn resistance and
insulin secretion, and as well as the incidence of NIDDMfi{& 57, 87, 99, 103, 167).
Intervention with daily dietary vitamin D supplementation signifipaminproved serum
25D3 levels and significantly decreased measures of insulinamsestand fasting blood
insulin concentration in a large randomized placebo-controlled humah (137).
Significantly, serum 25D3 measurements correlate inversely imgulin secretion indices,
suggesting another non-classical target, namely the pandiezlts responsible for insulin
secretion (41). Isolated murine pancredticells, along with a culturefl cell-derived line,
have been shown to express CYP27B1 mRNA transcript similar toCafiR27B1 transcript
(22). This finding is consistent with evidence that rats deprivediffitient dietary vitamin
D have reduced insulin production and secretion and impaired glucossckeaompared to
those fed a sufficient diet (31). Furthermore, 1,25D3 administratiormalizes glucose
clearance rate and insulin secretion in the vitamin D-deficiatg by increasing the
biosynthesis of insulin (31). The combined evidence suggests that a megbanism by
which 1,25D3 may prevent the development of full-blown diabetes Ielpying to maintain
insulin production and secretion. In addition, 1,25D3 may also have effeatedulating
insulin sensitivity through modulating insulin receptor expressionsagmiling (32, 215).
Recently, a VDRE was identified in the human insulin receptor gesmoter, suggesting
responsiveness to vitamin D in transcriptional regulation (124). Fortmer cultured

immature monocytes administered 1,25D3 have been shown to increase rasafptor
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expression in response to glucose (123), although this response wasiteat il ap cell-
derived insulinoma model (107). When administered 1,25D3, cultured mudideace
protected against free fatty acid-induce reductions in glucoskeiph a dose-dependent
manner (215). These protective effects appear to be mediatedck®ading tyrosine
phosphorylation of insulin receptor substrate 1 (IRS-1) and Akt in resptnsnsulin
receptor activation.
Vitamin D and the Kidney

The kidney plays the primary role in the overall metabolism andatgn of vitamin
D homeostasis. In particular, the cells of the renal proximal éuéwd responsible for the
systemic production of active 1,25D3 from its circulating precursor 28B8 therefore the
systemic endocrine activity of vitamin D on calcium and phosphorusdsiases depends on
the action of these cells. Since the metabolites of vitamiimdDlate in the blood bound to
DBP, the conversion of 25D3 in the tubule is preceded by glomdiltéaing of the 25D-
DBP complex followed by its re-uptake at the apical membraribeske cells. Recently, it
has been shown that megalin (a member of the LDL receptor family) isdietor primarily
responsible for endocytosis of filtered albumin, DBP, retinol binding iorcd@d many other
proteins (44, 108, 140, 177). Mice lacking megalin exhibit low molecular weight prageinur
which includes significant amounts of DBP (along with albumin andrdtve molecular
weight proteins), vitamin D deficiency, impaired bone growth, and dsetcbone density
(142). When the normal activity of megalin is blocked with recepttvaded protein,
radiolabeled DBP is found almost entirely in urine with only atioac remaining in
circulation after one hour of perfusion. However, when this blockagameved, nearly all

radiolabeled DBP remains in circulation after the same per®d, indicating the necessity

www.manaraa.com



14

of megalin for the reabsorption of the DBP complex (142). Alonfg miegalin, the adaptor
proteins cubilin and Dab2 also appear to be necessary to the reaptakemin D (143).
Cubilin is known to co-localize with and bind megalin in polarized epghatembranes,
and is dependant on megalin expression for its stability (5). Guddgio binds DBP, and
dogs with genetic cubilin deficiency excrete high amounts of DB&rime while none is
detectable in those without the genetic deficiency. Howeverguh#in deficient dogs do
not show the same wide urinary protein excretion profile seenmatialin deficiency (143),
suggesting that cubilin may confer some specificity in thegmtion of the DBP-25D3
complex. In addition to these proteins, Dab2 has also been shown to hiaitg ac
regulating the endocytic process of DBP-25D3 reabsorption. Dab2yiosolic ligand of
megalin that co-localizes to the clathrin-coated pits of the tubpildnelium (146). Dab2
conditionally null mice show reduced numbers of clathrin pits, along wathcurrent
excretion of urinary DBP (132). Furthermore, cell culture modefgyumnti-Dab2 antibodies
and siRNA knockdown techniques show suboptimal internalization of megalidiffuglon
of megalin localization outside the clathrin pits (127, 136), suggestedg Dnight be
important for proper trafficking and sorting of megalin during tmelogytic process.
Therefore the activity of megalin, cubilin, and Dab2 appear to Ieatrio proper renal
25D3-DBP reuptake and subsequent conversion of 25D to the active homftene
glomerular filtration, and making them important regulators of vitamin D horsest

In addition to the proximal tubule, these proteins have been shown to besexpie
other polarized epithelial tissues, such as intestinal and manapitinelial cells (164, 204),
suggesting their importance may also extend to the local aut@xtimas of vitamin D in

these extra-renal tissues by facilitating the delivery of atouy 25D3-DBP to these cells.
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The prevalence of vitamin D deficiency in populations with renahgdagy also
emphasizes the pivotal role that the kidney plays in vitamin D hoas®<0, 52, 128). In
the development of diabetic nephropathy, it is thought that hyperglgcgincated proteins,
and proteinuria induce intra-renal activation of RAS and angiotehssmghaling (198).
There is evidence from cell culture models of proximal tubelis ¢that angiotensin Il type 1
receptor signaling causes decreased megalin expression.dovmsregulation of megalin
appears to be inhibited by competitive insulin receptor-induced PI8katon (79),
suggesting that defective insulin signaling could contribute tocestimegalin levels and
therefore to increased proteinuria.

Studies using the NHANES data have shown that diabetics witre awphropathy
have significantly greater proportions of vitamin D deficiencyuge25D3 <20 ng/mL) or
insufficiency (serum 25D3 20-30 ng/mL) independent of all other factaithough the
association was greater in minorities), and that the prevatdralbuminuria increased with
decreasing rank of serum vitamin D concentration (52). Patiettisciwionic kidney disease
(CKD) had a 30% increase in adjusted odds ratio for vitamin [2ieiety which could not
be explained by variations in vitamin D intake (128), and there was a signifrend toward
deteriorating vitamin D status in children with CKD over a decatldollow-up (9).
Additionally, vitamin D deficiency is an independent predictor otallse mortality in CKD
patients, with CVD being the primary cause (14). The vitdbngeficiency associated with
CKD also frequently involves a decreased renal CYP27B1 actanty thus decreased
production and circulation of 1,25D3, resulting in hypocalcemia, secondary
hyperparathyroidism, and eventually development of osteodystrophy T4i3. association

becomes even more unfortunate when considering the evidence revielerdlest 1,25D3
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inhibits the hypertensive effects of the RAS, a primary taageCKD patients who are often
given angiotensin converting enzyme inhibitors to suppress thisrsystd prevent further
renal endothelial injury (212). Beyond renin suppression, 1,25D3 may provide additiona
protection by modulating the inflammatory and growth factor regsortkat underlie
degeneration of the glomerular structure. 1,25D3 has been shown to hgwel#etative
and protective effects on podocytes under increased glomerular prassyartially
nephrectomized rats (104), and to inhibit the production of signals indocitagjen matrix
formation and fibrosis in cultured rat renal fibroblasts (115). Boththe$e actions are
thought to be important in the development of glomerulosclerosis (144) apdodression
towards renal failure in patients with CKD (2). Treatmenthwiarrious active vitamin D
analogues have shown effectiveness in slowing the progression ofdiegase in various
animal models (126, 211, 212), and are associated with decreased riskatif vasrular
mortality in humans with CKD (172, 186). These studies highlight the saggeof
maintaining proper vitamin D metabolism in protecting and improving renal outcomes.
NIDDM comorbidities

There is considerable epidemiological evidence that NIDDMtesemcreased risk
for many of the vitamin D-related chronic diseases, most no@¥y and cancers of the
breast, colon, pancreas and possibly prostate. For example, NIDDNVvglgsdorrelates
with increased incidence of breast cancer in large multiple olserabhstudies, with the
correlation being strongest in post-menopausal women (116, 130, 199). hesigiance
was also independently associated with breast cancer incidepostimenopausal Chilean

women, although this effect was not always seen in all populaté®)s (A recent meta-
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analysis found a 20% increase in relative risk for breast camseng diabetic (primarily
NIDDM) women (105).

Colon cancer incidence also appears to be positively associatedNNXDM.
Increased risk for colon cancer was found in both male and ésmaih NIDDM compared
to non-diabetics in multiple populations (106, 169), while NIDDM also indepeydent
predicted greater rates of advanced colon adenomas in women (53). Altticese
correlations with NIDDM appear to be strong, they were not ydwaund when other
parameters of glucose metabolism were used, such ag Hieasurements (158). In
addition to colon cancer, two large meta-analyses have found sigmificcreased risk of
pancreatic cancer among NIDDM subjects compared to non-dialfgfic85). However,
since the causal factor in this association cannot be conclusietdymined, it may be that
the presence of pancreatic cancer is causing the increased NIDDMowide

Interestingly, prostate cancer risk appears to be inversebgiased with NIDDM in
multiple observational studies and meta-analyses associate diab#tedecreased risk for
prostate cancer incidence (25, 33, 95, 194). This association is thougghtdioe to a
tendency for decreased androgen production in diabetics (65). Howeviex a recent
cohort study showed no association with overall prostate cancigenmte, it found an
association with NIDDM and increased risk of developing advanced fgasiacer in an
Asian population (112), perhaps suggesting the difference in the pa#sigj@f androgen-
sensitive and androgen-insensitive prostate cancers and thationship to diabetes.
Overall, impaired glucose tolerance was associated with imctedlscancer mortality rates
in the NHANES Il data set (166), suggesting a strong link betweedetredopment of both

diabetes and cancer.
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Lastly, it is widely known that NIDDM patients also have sigaiftly increased
cardiovascular morbidity and mortality, and this relationship alsenest to the various
pathologies of the metabolic syndrome, including obesity, hypertensi@iipidemia,
insulin resistance and glucose intolerance (191).

As previously stated, the diseases associated with NIDDM hkbsee often been
shown to correlate with low vitamin D status, but the mechanism béendevelopment of
the deficiency remains unclear. However, as microalbuminuria and opgphy are
common comorbidities associated with NIDDM (67, 120) along with altered vitamiatis s
(8, 87, 103), we hypothesize that renal dysfunction, possibly througbhaged activity of
megalin-cubilin-Dab2 mediated endocytosis, may contribute to decreasention of serum
25D3 and increased urinary excretion of the DBP-bound complex. cChenalated effects
of this alteration over time could contribute to lowered serum 25D3 status alab#itaior
conversion to the active 1,25D3 in peripheral tissues and increaseskhef rihe many
previously mentioned chronic diseases, such as cancer and cardiovascular diseas
NIDDM disease etiology

NIDDM is a metabolic disease characterized by chronic imstdsistance, and
progressivel cell failure leading to impaired insulin action, disrupted glucoselliveg, and
hyperglycemia. While genetic factors play a part in the developmiethe disease, it is
understood that inflammatory processes are associated withvdlemtaent of both insulin
resistance and obesity (196), which is present in a majority DDNI cases (192). Indeed,
insulin and inflammatory signals appear to intersect in adipaaeetishus proving it central

in the regulation of both metabolic and immunologic signaling (196).
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Adipose tissue has endocrine function and secretes adipokines suelptias
adiponectin, and pro-inflammatory cytokines TNFnd interleukin 6 (IL-6), among others
(59). Leptin was first identified as an adipocyte-derived faattwencing the development
of obesity through its regulation of food intake and energy expendi@)e Genetically
obese mice lacking the leptin gene product demonstrated hyperptedpates, reduced
physical activity, and reduced thermoregulation. These samednasgcally reduced food
intake, body mass, percent body fat, increased energy expenditdreestored euglycemia
when administered leptin injections daily (34, 68, 156), substantiatiagptbfound
importance of this adipokine in metabolic signaling and regulatideealing behavior. In
support of its role in appetite suppression, high levels of the lepteptagcwere found
expressed in the feeding regulation areas in the brain (129). Inoaddéptin also acts in
skeletal muscle to increase fatty acid oxidation (134), indicatinegulatory role in energy
expenditure as well. However, in most human cases of obesity lepels are elevated
even when normalized for body mass, indicating high levels of hormoretisecwith no
compensatory effect on appetite or energy expenditure, thus suggestiaig of resistance
to leptin activity (59). Furthermore, at high levels of leptimanistration (20x normal) in
human obese populations, weight loss was induced in variable amountsrégsder food
intake, but energy expenditure did not change, indicating that thetadkeluscle might be
the primary site of leptin resistance (72, 197). In rodents, lepdistaace can be induced
after high-fat feeding (180) and appears to be mediatedducirg AMPK signaling and
increasing SOCS3 signaling (21, 179).

The adipokine adiponectin appears to be protective in the development by obes

and NIDDM, as there is a strong negative correlation between adipoleels in humans
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and measures of adiposity (83). Additionally, adiponectin increaste®xidation and
increases insulin sensitivity through its modulation of inflamnyasognals (119, 203). For
example, adiponectin directly suppressed the production of d'ldRe IL-6 (200, 208) in
macrophages. Weight reduction itself increased adiponectin in obesmné (125, 148),
suggesting a normalization of adipocyte secretion with reductions in obesity.

The link to inflammatory processes in obesity, insulin resistandeNdDDM was
first suspected when the pro-inflammatory Tikas found to be overexpressed in adipose
tissue of obese rodents (82, 170) and confirmed in humans (80). The presenceasied
numbers of macrophages, also capable of secretingal NFwhite adipose tissue of obese
individuals suggests an immune component contributes to this signaling (195B&8itles
its immunologic functions, TNIe: induces serine phosphorylation of IRS-1, inhibiting the
ability of IRS-1 to associate with the insulin receptor and medlatvnstream intracellular
insulin signaling (3, 4, 81), resulting in impaired insulin receptorviagti Furthermore,
rodent studies using obese TMFaull mice demonstrated improved insulin sensitivity
compared to wild-type mice with diet-induced obesity (190), indigatfiNFo is a
significant mediator of insulin resistance in obesity.

It has been suggested that a contributing mechanism behind the dewmetopm
insulin resistance is adipose tissue hypoxia (205, 210). Indeed, a pragatgtor of insulin-
mediated glucose uptake, the foremost determinant of peripherahimssistance, is the
degree of muscle perfusion (13, 24). In vitro, hypoxia induces gmtref vascular
epithelial growth factor, an angiogenic factor, and leptin from agltpsec(121, 193), and
reduces adiponectin expression (78, 206). Moreover, hypoxia induces genesierpoés

inflammatory cytokines TNFe: and IL-6 in adipocytes and macrophages (206). Indeed
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adipose tissue hypoxia may explain increased accumulation cbphagres in adipose tissue
of obese individuals (135), although the exact mechanism remains unkg0sy (Since
macrophages are known to secrete many factors involved in ang@gdheir recruitment
may be important response to hypoxia and subsequent adipose tisedelimegn(135, 153,
205). However, it is known that increased macrophage accumulation anelasistr
adiponectin expression in obesity are associated with proinflammBiify. release (195,
200, 206), a response that directly inhibited insulin-mediated capitegsuitment and
glucose uptake in a rat model (209). In contrast, leptin releaseh wehalso induced in
adipocytes in hypoxic conditions, increases vascular permeabilityn veltgninistered
intradermally in mice (37), and directly induces vasodilation in mena38). These actions
indicate that leptin also functions in regulating the vascular resptmshypoxia. In
summary, it is possible that with excess fat storage as imitpbadipose tissue blood
perfusion may become inadequate inducing hypoxia. Hypoxia mayrithece macrophage
recruitment, angiogenic signaling and vessel dilation, with immelt&neous production of
inflammatory signals, further leading to insulin resistance (205). Addilyofieee fatty acids
(FFAs) can mimic the negative effect of TNFen capillary recruitment (90) and insulin
signaling via IRS-1 (60, 141), indicating dysfunctional lipid metaolicould play an
important role in induction of insulin resistance as well.

Along with insulin resistance, the development of NIDDM requires iraga
compensatory insulin secretion, which has been attributed to incrgaseias off cells
found in NIDDM patients (30). In cultured hum@ncells, genes inducing apoptosis are
overexpressed in hyperglycemic conditions (55). Additionally, in rodextefa of NIDDM,

controlling hyperglycemia pharmacologically preservgdcell function, insulin gene
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expression, and glycemic control (70). However, slight decreasesulin secretion are
seen before impairment of glucose tolerance is are obserVednirhealthy subjects with a
predisposing family history of NIDDM (93), indicating that toxiteets of hyperglycemia
itself is not sufficient to explain th@ cell failure in NIDDM. Insulin resistance in adipose
tissue increases plasma FFAs due to decreased insulin-mediated supprdgsbrsisf(48).
Therefore, increased lipid accumulation incells may cause lipotoxicity (189). In fact,
Kashyap et al. (93) found that sustained infusion of FFA impairedinnsekretion in
patients genetically predisposed to NIDDM. Furthermore, reducingmplaFFAs by
blocking lipolysis improved indicators of insulin secretion in the esgopulation (49).
Therefore, it appears that the inflammatory process involvedijpoeyte insulin resistance,
in conjunction with the known effects of glucotoxicty, may contribut@docreatic cell
failure viap cell lipotoxicity and apoptosis (159).
Zucker diabetic fatty rat model of NIDDM

The Zucker diabetic fatty (ZDF) rat is a widely used rodentel of NIDDM that
was developed by inbreeding the obese Zucker rat. The obeser [tafta) rat is
homozygous for a missense mutation in the leptin receptor gene (7, 88834, As a
result, the obese Zucker rat develops severe obesity earlg {348 weeks) due to defective
leptin signaling, which is characterized by hyperphagia, teécthermoregulation,
preferential adipose deposition, and elevated levels of circulbptm. (7, 69, 89, 216).
The male ZDF rat develops the same characteristic endcaimermalities of the obese
Zucker rat that accompany defective leptin signaling, such asitpbsulin resistance,
dyslipidemia, hyperinsulinemia, and impaired glucose tolerance. Oy@tdiycemia, which

is not generally found in obese Zucker rats (7) usually develophe i@DF rats between 7
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and 9 weeks of age with insulin levels increasing until approxiyjn@@ weeks. At that
point, insulin levels begin to fall, which is consistent with the psgjon of human NIDDM
pathology (46, 110), indicating that altered leptin signaling tells does not significantly
impair disease progression in the ZDF, as in other rodent modelbesity with leptin
receptor defects (131). Female ZDF rats do not normally deveglmrdiycemia or NIDDM
symptoms, but they maintain measures of obesity and insulin resistamparable to males.
However, there is evidence that a high- fat diet can induce Hypengia, indicating that
with appropriate dietary modulation, the female ZDF rat may lbés@an adequate rodent
model of NIDDM (185). In addition, at later stages these anirdel&elop symptoms
consistent with neuropathy (28, 147), retinopathy (51), nephropathy (45, 77), and
hypertension (111, 122), which are common complications of NIDDM in humans
confirming the usefulness of this rodent model for studying pathaloggsociated with

NIDDM.
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CHAPTER 2: VITAMIN D HOMEOSTASIS IS COMPROMISED DUE
TO INCREASED URINARY EXCRETION OF THE 25-

HYDROXYCHOLECALCIFEROL-VITAMIN D-BINDING PROTEIN
COMPLEX IN THE ZUCKER DIABETIC FATTY RAT
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Abstract

Altered serum concentrations of the major circulating form ofmiitaD (25-
hydroxycholecalciferol, 25D3) and its active hormone derivative (1,25-
dihydroxycholecalciferol, 1,25D3) have been linked to non-insulin dependenttetiabe
mellitus (NIDDM). However, a mechanistic basis for thiscarrence has not been fully
elucidated. Normally, renal reabsorption of vitamin D-binding proteound 25D3
absolutely requires receptor-mediated endocytosis via a receptoplex containing
megalin, cubilin, and disabled-2 (Dab2), whereas an absence of megainemdocytic

partners can lead to a marked urinary loss of 25D and severe nvindeficiency.
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Therefore, we hypothesized that reduced serum vitamin D staNi®DM may be due to
reduced expression of megalin and/or its endocytic partners andsedrarinary excretion
of protein-complexed 25D3. In the present study, we utilized Zuckéetitafatty Rats
(ZDF) to demonstrate that renal reuptake of the 25D3-DBP conwdeaxcompromised in
ZDF animals, which was reflected by a reduction in expressfomegalin and Dab2.
Moreover, serum levels of both 25D3 and 1,25D3 were reduced and urinary 25D3, 1,25D3,
and DBP excretion were elevated in the ZDF animals compardtieir lean controls,
regardless of vitamin D levels in the diet. Taken together, teséhe first reports to our
knowledge that associate compromised renal reabsorption of the 25D&dpB#ex with
expression of megalin and its endocytic partners in NIDDM, whickuin can lead to
compromised vitamin D status.
Keywords diabetes - vitamin D - vitamin D binding protein - kidney - rat
INTRODUCTION

Optimal vitamin D status has been associated with improved @&ng-health
outcomes in cardiovascular disease and cancer, complications thaabbgyher incidences
in individuals with noninsulin-dependent diabetes mellitus (NIDDM). Reaal function,
also a consequence of poorly controlled type 2 diabetes, results iremgoan, increased
epithelial cell damage, and increased risk for CVD (3, 11). Intiaddio data from case
control studies that indicates that maintenance of optimal s2&ahydroxycholecalciferol
(25D3) concentrations (>90 nmol/L) is preventative against many tgypeancer, research
has suggested that optimal vitamin D status may be protectivesadgpertension and
nephron damage through the suppression of renin production in the kidney (13, 36).

Furthermore, clinical and epidemiological studies have suggdsa¢dype 2 diabetics and
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individuals with chronic kidney disease are more likely to be intvidnaonsidered the
suboptimal range (< 80 nmol/L) with respect to serum vitaminaust(7, 15), though the
mechanistic basis for this occurrence has not been eluciddiekfdre, fully understanding
all factors influencing vitamin D homeostasis in this populatioy negeal opportunities to
improve outcomes and comorbidities associated with type 2 diabspegiadly those with
renal complications.

Cells of the renal proximal tubule are responsible for reabsorptiatheoimajor
circulating form of vitamin D (25D3) from the glomerular fte and are the primary site of
activation of 25D3 to the active hormone, 1,25-dihydroxycholecalciferol (BR5ihich is
released into the blood for systemic use. For 25D3 to be reabsamdémt activated by
CYP27B1 in the kidney, the proximal tubule must internalize the 25@8auit D-binding
protein (DBP) complex due to strong binding of DBP to 25D3 in circulg®dn 22). This
process is absolutely dependent on the actions of the membrane reweg#din and its
endocytic partners cubilin and disabled-2 (Dab2). In support of this correseiarchers
showed that when megalin, cubilin, or Dab2 expression is absent, 185®8{DBP in the
urine was dramatically elevated and severe vitamin D debgieresulted (21, 22).
Moreover, renal megalin and cubilin levels were markedly reduced iarsiand rats with
diabetes (30, 31), which resulted in increased urinary excretiorbwial, another known
ligand of megalin.

In the present study, we tested our hypothesis that uncontrolled NND@NH lead
to decreased renal expression of megalin, cubilin, and/or Dab 2 inrddichkestic Fatty Rats
(ZDF), a well-established model of NIDDM (34). Furthermore, we hypateddhat reduced

expression of megalin or any of its endocytic partners would teaiticreased urinary
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excretion of the 25D3-DBP complex and compromised vitamin D st@usfirst objective
was to characterize vitamin D homeostasis and expressiongaflimecubilin, and Dab 2 in
ZDF rats. Secondly, we determined whether vitamin D deficiem&DF rats was due to
hormonal changes or reduced endocytosis of the 25D3-DBP complex, am@mwheteased
concentrations of cholecalciferol in the diet could influence renal vitamini3oeation.
MATERIALS AND METHODS

Animals and Diets. All animal studies were approved by the Institutional Animal
Care and Use Committee and were performed according to loveal8tafersity Laboratory
Animal Resources Guidelines. Male Zucker diabetic fatty (Z&# lean control rats were
obtained from Charles River Laboratories at 6 wks of age and indiichalsed in plastic
cages in a 12-hour light-dark cycle with free access to food and water until 14 wiks of ag

Study 1: characterization of vitamin D excretion in ZDF rats. ZDF rats (n=6) and
lean rats (n=6) were fed a commercial high-energy roden{Rligina Formulab Diet 5008)
over the course of the study to induce a diabetic state ilDReanimals and sacrificed at 14
wks.

Study 2: assessment of vitamin D homeostasis in ZDF rats. Male Zucker Diabetic
Fatty [ZDF, n=24) and lean (n=16)] rats were fed a high-enemgy(Burina Formulab Diet
5008) until 11 wks, when the ZDF rats were randomly assigned to dhesefdiets (n=8),
vitamin D deficient (O IU cholecalciferol/kg, VD), vitamin D $iafent (1000 1U/kg, VS), or
vitamin D supplemented (10000 1U/kg, VDS), and the lean rats to oneodafievtreatments
(n=8), VD or VDS. Diets were formulated based on the AIN-93G puarifliet. Animals

were sacrificed at 14 wks of age.
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For both studies, all animals were fasted twenty-four hours prisatafice and
placed in metabolic cages for urine collection. Animals waraesthetized with an
intraperitoneal injection of ketamine-xylazine (90 and 10 mg/kg bodly Whole kidneys
were excised and snap frozen in liquid nitrogen for subsequent RNAadsol&Vhole blood
was collected by cardiac puncture and serum was separatedtbfugation and stored at -
80°C until analysis.

Assessment of Renal FunctionrSerum and urinary creatinine levels were measured
via a commercial kit (QuantiChrom Creatinine Assay Kit, Bioassay Systems, Hayward,
CA).

Assessment of Blood Glucose and Serum Insulifo confirm the presence of
diabetes in ZDF rats, blood glucose was measured by glucorBatgsr(Healthcare LLC) at
the time of sacrifice. Serum insulin was analysed using asAldpecific for rat insulin
(Millipore, Billerica, MA).

Assessment of Urinary Albumin and DBP. Urinary albumin and DBP
concentrations were measured via commercial ELISA kits (Eixdebkiladelphia, PA and
Life Diagnostics Inc, West Chester, PA, respectively). @andilutions used for ELISAs
were as directed or empirically determined, as appropriate.

Assessment of 25D3 and 1,25D3 Statukotal 25D3 and 1,25D3 were assessed in
both serum and urine samples using a commercial enzyme immuno&gsay
(Immunodiagnostic Systems, Scottsdale, AZ). Urinary excretiontafmm D metabolites
were assessed relative to urine creatinine.

Real-time PCR. Total kidney RNA was isolated using SV Total RNA Isolation

System (Promega, Madison, WI), quantified by UV detection, and used forrirstl tDNA
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synthesis (5 ug/50ul reaction) using a High Capacity cDNA syisthas with RNase
inhibitor (Applied Biosystems, Foster City, CA). Three stocks@NA were generated per
kidney sample, and each cDNA stock was quantified by UV detectidnralependently
analyzed for megalin, cubilin, Dab2, and CYP27B1 by real-time PCRI. titea PCR
reactions were performed in duplicate using iScript SYBR Gizetection reagents (Bio-

Rad, Hercules, CA), 200 ng cDNA/well, and primer sets specifiedbmegalin (Forward

Primer-AACGGTCAGTGTATTCCGAGCGAA), Reverse Primer-
TTGGCAGTCGTCATCTCCATCACA), Cubilin (Forward primer-
AGGGACACAAGGAACCTTTGCCTA, reverse primer-
GTCTTTGCTGCAGTCATTGTGGCT), Dab2 (Forward primer-
AGGTTGAAGAAGCCAACAAAGCGG), Reverse primer-

AGTCCTGCTTTACGCCATTCGGTA), and CYP27B1 (Forward primer-
AAGTTCCTCCCGACACAGAAACCT), Reverse primer-
GCTTCTGGGCAAAGGCAAACATCT) and were normalized again86ImRNA (Forward
Primer-CCAGAGCGAAAGCATTTGCCAAGA), Reverse Primer-
AATCAACGCAAGCTTATGACCCGC). Gene expression was determinesl fald-
induction relative to lean control animals.

Histology and Immunohistochemistry. Formalin-fixed kidneys were embedded in
paraffin, sectioned at 5 puM, and stained with Hematoxylin and EosiforYroutine
histological assessment. To detect megalin and Dab2, paraffiemb@dded sections were
placed in 1 mol/L urea and microwaved for 10 min then cooled for lidesSvere washed
3x for 5 min in ddHO, then washed in phosphate-buffered saline (PBS) for 5 min. Slides

were then soaked in 90% methanol containing 30% hydrogen peroxide for 1& Rih
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followed by 3 washes with PBS (5 min/wash). Following an ogétincubation with
blocking buffer (3% bovine serum albumin/0.1% Tween in PBS) slides wetdated

overnight with either a 1:50 dilution (in blocking buffer) of a polycloaatibody directed
against megalin (Santa Cruz Biotechnology, Santa Cruz, CA) or adufion (in blocking

buffer) of monoclonal antibody directed against Dab2 (BD Pharmin8an, Jose, CA).
Slides were then washed 3x in PBS and incubated with a 1:500 dilutdwcking buffer of

the appropriate biotinylated secondary antibody for 1 h at RT. Following 3 wiadhBS for

10 min, 1 drop of ABC (Vector Laboratories, Burlingame, CA) wapplied to slides for 30
min at RT. Slides were washed in PBS 3x for 5 min and DABc{& Laboratories,
Burlingame, CA) was applied for 5 min followed by a 5 min wiastidH,0, counterstaining
with Hematoxylin, and mounting with Permount.

Assessment of Serum Calcium and Parathyroid Hormon€elo determine whether
vitamin D status was influenced by calcium and parathyroid horreweés, serum calcium
and parathyroid hormone concentrations were measured using comimeasialable
ELISA kits (Bioassay Systems, Hayward, CA and Immutopics, S&mente, CA,
respectively)

Statistical Analysis.Data were analyzed by one-way analysis of variance (AA)Q
unpaired t-test, or Mann-Whitney test using InStat softwaresi(we 3.0b for Macintosh,
GraphPad Software) or linear regression using Prism softwarsidn 5.0a for Mac OSX,
GraphPad Software), as appropriate. Differences between medninear relationships

were considered significant when p values < 0.05 were obtained.
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RESULTS

Study 1: Characterization of Renal Vitamin D Reabsorption in ZDF Rats

Confirmation of NIDDM in ZDF rats. After 8 weeks on the Purina 5008 diet, fasting
blood glucose and serum insulin levels in the ZDF rats were bothtetev4-fold compared
to the non-diabetic control animals (Figure 1). This confirmed hyyergiia and
hyperinsulinemia in ZDF rats.

Megalin, cubilin, and Dab2 gene expression. To determine whether loss of the
25D3-DBP complex in the urine was due to decreased renal absosgliole kidney lysates
were utilized to measure megalin, cubilin, and Dab2 mRNA expressiog neal-time PCR.
We found that both megalin and Dab2 expression was reduced in ZDFsanonglared to
the lean control animals (~50% and ~80%, respectively, FiguremdA&2R), whereas we did
not detect differences in cubilin mMRNA expression (data not shompilarly, we found
that immunohistochemical staining of tissue sections revealedhtgalin and Dab2 protein
expression was reduced in the renal proximal tubules in theselaififigure 3). Moreover,
from our histological observations of kidney tissue from ZDF ratsrosés appeared to be
present in the renal proximal tubules, which may explain, at least in parginged staining
of megalin and Dab2 in kidney sections.

Serum creatinine. Renal function was assessed by measuring serum creatinine.
Serum creatinine levels were elevated ~80% in ZDF anicwispared to lean controls,
indicating that renal function was compromised in ZDF animals (Figure 4).

Albuminuria and increased DBP excretion in ZDF rats. We measured urinary
albumin for two purposes. 1) albumin, like DBP, is a known ligand of nre¢ai), and 2)

severe albuminuria is a biological marker of nephropathy (8, 30\ Yound that marked
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albuminuria was present in the ZDF animals, which excreted ~80gi@ater amounts of
albumin compared to lean control animals. Similarly, ZDF ratseted large amounts of
DBP in urine (8.9 ng/mL) (Figure 2C and 2D). In contrast, DBP wasally undectable in
the urine of lean control animals, indicating that the ability of Zbknals to reabsorb the
25D3-DBP complex was markedly compromised.

Urinary and serum 25D3 and 1,25D3 concentrations. Urine was examined for the
presence of the 25D3 and 1,25D3 to determine whether loss of DBP ininkewas
associated with increased urinary loss of vitamin D. Urine frddf Animals contained
elevated concentrations of total 25D3 (which is dependent on DBP asprt to the
kidney)the major circulating metabolite of vitamin D, compared to leanaartimals (31%
higher in ZDF animals when normalized to urinary creatinine leWatuure 5B and 5D).
Likewise, urinary concentrations of 1,25D3 (normalized to urinarytioiea concentrations)
were greater in ZDF animals compared to control animadgi{€i4D). Additionally, urinary
DBP concentration strongly correlated with the urinary conagatr of 25D3 (Figure 6) in
the ZDF animals {=0.85, p<0.05). Serum 25D3 and 1,25D3 levels did not differ between
groups (Figure 5A and 5C); however, we determined that consumption ofirviia/kg
bodyweight was significantly higher in ZDF animals (Figide an indication that loss of
urinary vitamin D metabolites was compensated for through the aligtiestion that we
addressed below in the second set of our experiments.

Study 2: Assessment of Vitamin D Homeostasis in ZDF Rats

Assessment of 25D3 and 1,25D3 status. As in our first set of experiments, NIDDM
was confirmed in all ZDF rats. Glucose and insulin levels were4P00 greater in ZDF

rats compared to lean animals (data not shown). After 3 weeksngffied the experimental
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diet both 14 wk old ZDF rats fed a vitamin D deficient (VD, 0 hélecalciferol/kg diet) or
a 1000 IU cholecalciferol/kg (VS) diet exhibited reduced serum 28&s compared to
their lean counterparts (43- and 22% reduction, respectively) feshthe diets (Figure 8A).
Moreover, urinary excretion of 25D3 in ZDF animals fed the VD leweds elevated
compared to their lean counterparts by 30% after normalizationrtary creatinine (Figure
8B), indicating that vitamin D status was compromised to a greater extentdDEhanimals
than in lean animals after 3 wks on the VD diet. In support of thisepbnarinary excretion
of 25D3 by ZDF rats fed the VS was elevated 24% comparedriad¢sand in contrast to
study 1, we did not detect differences in cholecalciferol intakbdyweight between the
ZDF and lean control animals fed the VS diet (data not showr)nSgj25D3 levels were
reduced 70% whereas urinary 1,25D3 levels were ~60-fold greater mdrenalized to
urinary creatinine from ZDF animals fed the VD diet compaocie@an controls (Figure 8C),
ZDF animals fed the VS diet exhibited 64% lower serum 1,25D3 contiengrand excreted
~9-fold higher concentrations of 1,25D3 in urine (Figure 8D). When additiotzahin D
(10000 IUs/kg) was added to the diets of the ZDF rats (VDS)e lencreases were seen in
both serum and urinary 25D3 concentrations (70%- and 12-fold, respectidelyever,
serum concentrations of 1,25D3 remained markedly lower in ZDF aifedithe VDS diet,
indicating that high-dose cholecalciferol supplementation of ZD§ efectively elevated
serum 25D3 concentrations but had no impact in improving serum 1,25D3 levels.
Serum creatinine. As in study 1, renal function was assessed by measuring serum
creatinine. Serum creatinine levels were elevated ~76% in aidiRals compared to lean

controls (Figure 8D), indicating that renal function was compromised in ZDFainim
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Urinary albumin, DBP, and renal megalin expression in ZDF rats. Similar to what
we observed in our first set of experiments, we detected saNen@inuria and urinary loss
of DBP in all ZDF animals compared to their lean controls (BKS and 9B). Urinary
albumin concentrations ranged from 470-1250 mg/dL and urinary DBP coatceamdr
ranged from 2200-3500 among all ZDF rats, whereas urinary albumin aRdfdB lean
animals were virtually undetectable. Moreover, as reported al@wveduction in renal
MRNA megalin expression was observed in all ZDF groups comparetieto lean
counterparts (figure 9C).

CYP27B1, serum calcium, and PTH. Although the diabetic rats all exhibited
decreased levels of serum 1,25D3, serum calcium and PTH concerstredid not differ
between ZDF and lean animals in any of the treatment groupsg€FI@A and 10B). Renal
CYP27B1 mRNA expression was elevated only in ZDF animals fed/Eheliet, a likely
result of reduced serum 1,25D3 concentrations and/or a lack of diatdegalciferol as we
have previously reported (28). Similar to our previously published work &&duction in
renal CYP27B1 mRNA expression was observed when ZDF animals were fed théiéfDS
DISCUSSION

In the present study, we found that NIDDM was associated witkeased urinary
excretion of 1,25Q 25D0;, and vitamin D-binding protein (DBP), which binds with high
affinity >99% of circulating 25B and with low affinity to 1,25D3 for delivery to the renal
proximal tubule for reabsorption (2, 14, 23, 29, 33, 35). Moreover, we fouhddhan
levels of 25D3 and 1,25D3 were reduced in animals that not only edaisproportionately
larger amounts of 25D3, 1,25D3, and DBP in urine, but also exhibited reducad re

expression of megalin and Dab2. Furthermore, we found that compromiseuinvD status
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was independent of both renal CYP27B1 expression and calcium homeostdsibetic
animals. Rather, our data strongly suggest that the major contgbuchanism behind
compromised vitamin D status in our animal model was inadequatdimeaged/or Dab2-
mediated renal reabsorption of 25D3 and 1,25D3. These findings are eonaish a recent
clinical study, where researchers found that urinary levelsnegalin and cubilin were
markedly elevated in albuminuric patients with type 1 diab&@) further indicating that as
diabetes progresses the ability to maintain normal vitamin D bstasgs via megalin-
mediated mechanisms is compromised.

A growing number of reports have convincingly linked low vitamin Dustab the
incidence of a number of chronic diseases, including diabetes, cafidbes colon, breast,
prostate, and autoimmune disease, and osteoporosis (6, 19, 32). Additicesdigrchers
have estimated that the majority of the United States populatiwbits serum vitamin D
levels that are substantially lower than those required thrcrieg chronic disease risk (6).
Hence, interest in utilizing vitamin D in dietary interventionatggies has markedly
increased over the last decade. Moreover, the theory that low witBmstatus is a
contributing factor to the incidence of chronic disease thatheart of an ongoing debate
about dietary recommendations for vitamin D. Based on data fromvabseal studies,
Garland, et al. (6) recently reported that in order to provide are@4ction in the risk of
cancers of the colon and breast, serum levels of; 2i#@d to be ~80 and 110 nM,
respectively. It is estimated that in order to reach thesams@5D; levels, the average
individual must consume between 2000-3500 IU vitamifd&®y, or 5-7 times the Adequate
Intake defined in the Dietary Reference Intakes for vitaii(6). In diabetes, the vitamin D

requirement for protection against secondary chronic diseasesrappdae even greater.
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This idea is supported by research that demonstrated that tymel Type 2 diabetics
exhibited reduced concentrations of the major circulating form afmint D [2503], and/or
its active derivative 1,25-dihydroxyvitaminz[D1,250;) (23, 29, 33). There is little known
about why vitamin D status is suboptimal in these individuals, but darsimgest that it
may be due to compromised kidney function. In support of this concept, we toatncts
with NIDDM exhibited a drastic reduction in the renal expression of the endocgtitbrane
proteins, megalin and Dab2, which are essential for reabsorpfratein-bound 25p(30),
and increased urinary loss of albumin and DBP, which are also albgalefgendent on
megalin for reabsorption. In support of this concept knockout mouse staesigslad that
animals lacking megalin or either of its endocytic partners,lioubr Dab2, exhibited a
marked urinary loss of 25fand severe vitamin D deficiency (17, 18, 21, 22).

Though we and others have found that vitamin D metabolism can betidediypa
altered under diabetic conditions (1, 27, 29), exploration of the roleegfln and its
endocytic partners in maintaining optimal vitamin status isew poncept. Hence, these
studies may offer new insight into whether vitamin D supplementatiah monitoring
urinary and serum vitamin D levels can help prevent or alleviatendary complications
stemming from compromised kidney function in diabetes. Our findimgkcate that
reabsorption of vitamin D by the kidney is a major contributingofaict suboptimal vitamin
D status in diabetes, which has clear implications with resfme¢he development of
secondary chronic diseases such as cardiovascular disease antypeangf cancer. It is
well-documented that non-insulin dependent diabetics are at a digpyoptaly high risk
for the development of breast, prostate, and colorectal cancer, cémateare arguably the

most sensitive to the actions of vitamin D. The naturally ooayactive form of vitamin D
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(1,25D3) has well-documented anti-proliferative actions, including cgllle arrest,
differentiation, and induction of apoptosis (4, 5, 12, 24, 37). Because low $evals of
1,25D3 and its precursors are often present in diabetes (1, 14, 27, 29)mthetee a
substantially larger dietary vitamin D requirement for theseviddals. Numerous animal
studies have outlined the potential role of increased vitamin D stathisrespect to the
inhibition of tumor formation and promotion. Vitamin D supplementation padrdatment
with chemical carcinogens inhibited fat-induced colorectal tumor gtiom in rats fed a
high-fat diet (16, 25). Injection of 1,25D3 or its analogues potentlyedsed the appearance
of aberrant crypt foci and tumors, as well as the proliferattmhaetastasis of established
tumors (9). Consistent with this concept, high tumor and polyp frequencwelsas
increased tumor proliferation, have been reported in studies wheéeats were fed low
vitamin D diets (10, 20, 26). Furthermore, diabetes has been linkeditoraased risk of
developing cancer in countless human and animal studies, although thenisrachahind
this phenomenon remains unclear. Interestingly, obesity and consumpadmgif-fat diet,
known risk factors for development of heart disease, cancer an@ tjiabetes, also appear
to strongly affect an individual’s vitamin D requirement (1, 14, 27, 29, 33).

In summary, these studies have provided evidence that megaliatededi
endocytosis plays a critical role in vitamin D homeostasis DDNI. Taken together, our
data provide the first evidence, at least to our knowledge, that retereadreabsorption of
circulating vitamin D via compromised receptor-mediated endosyi®s key contributor to

suboptimal vitamin D status in NIDDM.
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Fig. 1 Confirmation of NIDDM in ZDF rats. ZDF and lean rats were obtained at 6 wk of
age and fed a commercial high-energy rodent diet (Purina Formulab Diet 5008) sanduc
diabetic state sacrificed at 14 wks. To confirm the presence of diabete§ ira, blood
glucose was measured by glucometer at the time of sacrifice. Serum wasllanalysed
using an ELISA specific for rat insulin. Data are expressed as mealBM (n = 6); **P <

0.001.
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Fig. 2 Reduced megalin and Dab2 expression and renal reabsorption of DBP and

albumin in ZDF rats. Renal tissue and urine was collected from the same animals as
described for Fig. JFig. 2A and 2B. Megalin and Dab2 mRNA were analyzed as described
in Materials and Methods. A) Megalin mRNA abundance (determined byimeaPCR) in

ZDF and lean rats. B) Dab2 mRNA abundance (determined by real-time PCRYy iandD

lean ratsFig. 2C and 2D. Urinary DBP and albumin were analyzed as described in Materials
and methods. A) Urinary DBP concentrations from ZDF and lean rats. B) Ualanyin
concentrations from ZDF and lean rats. Data are expressed as n&akk(i = 6); *P <

0.05; *P < 0.01; ***P<0.001.
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Fig. 3 Renal morphology and immunohistochemical analysis of megalin and Dab2
expression in kidney of lean and ZDF ratsKidneys were excised from the same animals
as described for Fig. 1, processed, and sectioned for staining with Hemataxykiosin for
routine histological assessment (top panels) or subjected to immunohistoclstanag

for megalin and Dab2 as described in Materials and Methods. Megalin- (middls)Eareel
Dab2-positive cells (bottom panels) appear dark brown against the blue Henmatoxyli
counterstain.
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Fig. 4. Assessment of renal function in ZDF ratsSerum collected from the same animals
as described for Fig. 1 was utilized to measure serum creatinine. Daxpi@®sed as means
+ SEM (N=6); *P < 0.05.
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Fig. 5 Serum and urinary 25D3 and 1,25D3 concentrations in lean and ZDF ratSerum

and urine collected from the same animals as described for Fig. 1 werel utilineasure

25D3 and 1,25D3 concentrations in lean and ZDF rats by ELISA as described under
Materials and Methods. A) Serum 25D3 concentrations. B) Urinary 25D3 concargral
Serum 1,25D3 concentrations. D) Urinary 1,25D3 concentrations. Data are expressed as
means +SEM (n = 6); *P < 0.05.
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Fig. 6. Urinary excretion of DBP correlates with urinary 25D3 in ZDF rats. ZDF (n = 5)

were obtained at 6 wks of age and fed a diabetogenic diet (Purina 5008) for 8 wks until
diabetes was evident. 24 h urine output was collected and urinary DBP and 25D3 lewels wer
assessed by ELISA and EIA, respectively, as described in MateriadMethdds. Results of

a Pearson correlation test are indicated by the solidrimé(921,P < 0.01).
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Fig. 7. Cholecalciferol intake in lean and ZDF ratsZDF rats and their lean controls were
acquired at 6 wk of age and fed a commercial high-energy rodent diet (Purina fboDiaila
5008) until they were sacrificed at 14 wk of age. A) Total cholecalciferol imakBF rats
and their lean controls during the 8 wk study period. B) Cholecalciferol intakdatald as
IU’s/d/kg bodyweight for the 8wk study period. Data are expressed as m&kid tnh = 6);

* P <0.05.
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Fig. 8. Increased urinary output and compromised serum concentrations of 25and
1,25D3 in ZDF rats.11 wk oldZDF and lean control rats were fed either 0, 1000, or 20000
IU cholecalciferol/kg diet for 3 wk. 25D3 and 1,25D3 concentrations were measured in
serum and urine collected from ZDF and lean control rats by ELISA asliEsander
Materials and Methods. A) Serum 25D3 concentrations. B) Urinary 25D3 conaargra
Serum 1,25D3 concentrations. D) Urinary 1,25D3 concentrations. Data are expressed as
means (n = 8) SEM; bars with differentletters are significantly differentR < 0.05).
*Statistically significant, ZDF versus respective lean confct 0.05).

www.manaraa.com



68

>
®

1.54
4000 -

1.0 30001 b

2000+

0.54 b

{Fold Induction}
Protein (ngfdL)

1000

Mean Fold Change
In Megalin Expression

o
o
Urinary Vitamin D Binding

%— 1500
2 b
£ 2
£ 1000 4 b b §
E =t
F 3
=y oD
> 500 £ E
g 3
E a a 8
= |
0 T T
-] -] -] -] -]
SOOI
2 ) N
\F?S /&‘2 ,\Q@ ,\QQQ & N
o <
g v v

Fig. 9. Assessment of megalin expression, renal reabsorption of DBP and albumand

kidney function in ZDF rats. Renal tissue and urine was collected from the same animals as
described for Fig. 7. Renal megalin mRNA expression and urinary DBP and albumin
concentrations were determined as described in Materials and Methods. AinNieigalA
abundance in kidney. B) Urinary DBP concentrations. C) Urinary albumin concentrations
Data are expressed as mear8EM (n = 6);bars with differentletters are significantly

different P < 0.05).D) Serum creatinine levels of all lean and ZDF animals. Data are
expressed as meansSEM (n=12-18); *statistically significant (P<0.05).
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Fig. 10. The effect of NIDDM on serum calcium, serum PTH, and renal CYP27B1
expression.Serum calcium and parathyroid hormone concentrations were measured using
and renal CYP27B1 expression was assessed by real-time PCR in the saate asi
described for Fig. 7. A) Serum Calcium, B) serum PTH, and C) renal CYP27Blsapres

in ZDF and lean control rats. Data are expressed as means (nNSE8);bars with different
letters are significantly differentR < 0.05).

www.manaraa.com



70

CHAPTER 3: GENERAL CONCLUSIONS

General Discussion

The clustering of complications arising out of NIDDM and/or tHateel metabolic
syndrome show considerable overlap with research into “nonclassich&cif vitamin D,
specifically in its protective effects regarding cardiovagcd@ease and cancer. It is
therefore not surprising to find that NIDDM patients tend to have subalptitamin D
status, and it is tempting to speculate that there may hé#salagalationship existing between
NIDDM, poor vitamin D status, and chronic diseases. However shere is no clear
understanding of an underlying mechanism behind the NIDDM/vitamirsdoczation (6,
21), it is unclear whether strategies for improving vitamirtddus in NIDDM would provide
the same protective effect on chronic disease risk that sterbe apparent in general
populations. Therefore, elucidating this mechanism emerges as antamipstep in
attempting to improve patient outcomes in NIDDM.

Since obesity and NDDIM are commonly associated, one proposed eiglanat
behind suboptimal vitamin D status is that sequestration of 25D3 in adijzsse is
increased in NIDDM and decreases bioavailability of 25D3. Waatset al. (24) found that
circulating serum 25D3 levels are reduced in obese versus nonsigeets after either
oral vitamin D supplementation or UVB skin exposure; however, naitiegry excretion of
vitamin D nor kidney function were assessed. Furthermore, our rgslittate that impaired
renal function, specifically reduced proximal tubular reuptake of vit@min D-DBP

complex by megalin and its endocytic partner Dab2, contributesdwced circulating
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vitamin D in NIDDM. The reduced serum metabolites of vitaBifound in our diabetic rat
model are consistent with many previous studies linking suboptimaminitaD
concentrations and NIDDM, obesity and metabolic syndrome in human populdtjehsl2,
17). Additionally, our rat model showed considerable proteinuria, includimamyriDBP
excretion. Albuminuria and microalbuminuria have been observed to occarfraquently
in humans with metabolic syndrome or obesity (3, 11, 15). In early siagetic rats,
megalin expression was reduced and marked albuminuria was observedtingdibat
proximal tubule cell (PTC) reuptake impairment may occur eartijsease progression (22).
This impairment of protein reabsorption is known to predispose patienggomerular
hypertrophy and development of glomerulosclerosis (5, 8, 28). Moreovep,Tihdtself is
known to be a target for insulin (9, 16). In cultured opossum PTCsJimegpression was
decreased when PI3K inhibitors impaired insulin signaling. Additipnalhgiotensin Il
receptor type 1 activation also decreased megalin expressiandi@ating RAS activation
might also reduce PTC protein reabsorption. From its known inhibitiéimeoRAS, vitamin
D itself may be prevent glomerular degeneration (7, 13, 14, 19, 25, 20ppors of this
concept, epidemiological studies indicate improved renal outcomes Ihv@d 1,25D3 or
analog treatment (2, 20, 26). Furthermore, diabetic mice with senleh 25D3 production
show protection from developing nephropathy normally seen in the di§2aseTaken
together, it appears that maintaining proximal tubular reuptake anaision of vitamin D
may be an important target in preventing a progression of mgjnay leading to reduced
vitamin D status and disrupted renal vitamin D metabolism. Censigtith these studies,
our findings highlight the role of the renal proximal tubule inntaning overall vitamin D

status, via megalin-mediated endocytosis of circulating DBP-bouathivi D. This novel
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concept in vitamin D homeostasis may be important in consideringimit2mequirements
where known renal pathology exists or in populations at risk for dewglopenal

complications, such as NIDDM.

Recommendations For Future Research

Although there is evidence that improved vitamin D status viasogblementation
improves insulin signaling in human NIDDM populations (10, 18), there haga he
supplementation studies in these populations to assess long-term @jtcaunbh as
cardiovascular disease or cancer. Additionally, although we demewstitsst megalin-
mediated delivery of 25D3 to the PTC is reduced in NIDDM, we didemamine megalin
expression in other tissues. Since other tissues sensitive to 26@8also require megalin
and Dab2 for cellular delivery, research is needed to examether these tissues retain
their ability to internalize and utilize circulating 25D3 in NDM. This knowledge would be
important in assessing the physiological relevance of suppletioenta improve serum

25D3 status, and the levels required to induce a protective effect.
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